Cara Mencari Keliling 3/4 Lingkaran

Cara Mencari Keliling 3/4 Lingkaran

Pengertian Titik Pusat Lingkaran

Selain ngebahas tentang pengertiannya, gue juga mau ngasih tahu kalau ada unsur-unsur pelengkap di lingkaran. Emangnya, ada unsur-unsur apa aja, sih?

Pertama, ada yang namanya titik pusat lingkaran. Apa yang dimaksud dengan titik pusat lingkaran? Jadi, titik pusat lingkaran adalah titik yang berada di tengah lingkaran.

Terus, ada juga yang namanya diameter, nih. Apaan lagi, tuh? Nah, tali busur yang melewati titik pusat lingkaran disebut sebagai diameter. Unsur lainnya yang nggak kalah penting yaitu jari-jari lingkaran, letak titik pusat lingkaran ke garis lainnya.

Biar elo bisa paham seutuhnya, gue coba kasih gambaran dari titik pusat dan jari-jari lingkaran, ya.

Dengan gambar titik pusat lingkaran di atas, semoga elo jadi semakin mengerti unsur-unsur yang ada di dalam sebuah lingkaran, ya.

Tapi, gimana sih cara menentukan titik pusat lingkaran? Gue punya 3 tahapan yang bisa elo ikutin buat menentukan titik pusat lingkaran.

Nah, kalau elo mau nyari titik pusat lingkaran lewat gambar, bisa ikutin tiga langkah di atas, ya! Setelah tahu versi gambarnya, gue mau ngasih tahu rumusnya, nih.

Baca Juga: Contoh Soal Keliling dan Luas Lingkaran Beserta Rumusnya

Contoh Soal Keliling Lingkaran 2

Jika garis tengah sebuah lingkaran sepanjang 20 cm, berapa keliling lingkaran tersebut?

Garis tengah = diameter = d = 20 cmKeliling lingkaran = πdK = 3,14 x 20 cmK = 62,8 x cm

Maka, jawaban yang benar adalah 62,8 cm

Nah, itu dia cara menghitung keliling lingkaran beserta contoh soalnya. Yuk, coba latihan menggunakan rumus keliling lingkaran !

Apa, sih, lingkaran? Iya, yang bulat itu. Dilansir e-Gmat, lingkaran adalah bangun geometris yang terbentuk dari kumpulan titik pada jarak tetap. Lingkaran termasuk dalam bangun datar yang unik, sebab hanya punya satu lengkung dan gak ada titik sudut, layaknya bentuk lain.

Saat mempelajari bentuk geometri ini, kamu akan bertemu dengan rumus keliling lingkaran hingga luas bangun datar. Sebelumnya, akan lebih mudah kalau kamu memahami istilah-istilah yang menyusun bangun lingkaran nantinya dari cara menghitung keliling lingkaran hinga contoh soal keliling lingkaran akan dibahas dibawah ini. Apa saja?

Lingkaran adalah bangun datar yang tersusun dari titik-titik yang berjarak sama dari satu titik pusat. Jarak umum dari pusat lingkaran ke titik-titiknya disebut jari- jari. Jadi, secara keseluruhan, susunan lingkaran bergantung pada pusatnya (O) dan jari-jarinya (R).

Kalau mengamati sekitar, ada banyak benda yang berbentuk lingkaran. Yup, ada jam dinding, piring, alas gelas, hula hoop, dan masih banyak lainnya. Semuanya memiliki bentuk yang sama dan gak punya titik sudut.

Nah, ternyata, lingkaran gak sesederhana garis panjang yang melingkar, lho. Ada banyak istilah dalam bangun dua dimensi ini yang perlu kamu ketahui sebelum menghitung kelilingnya.

Agar lebih mudah memahaminya, kamu bisa melihat gambar di atas, ya.

Contoh soal keliling lingkaran dengan phi 22/7

Contoh soal keliling lingkaran dengan phi 22/7

Ada sebuah koin raksasa memiliki panjang jari-jari mencapai 70 cm. Kira-kira, berapa panjang keliling koin tersebut?

Karena yang diketahui jari-jari kelipatan tujuh, penghitungan keliling dilakukan menggunakan rumus Keliling Lingkaran = π x 2r dan phi 22/7, maka:

Maka, keliling koin raksasa tersebut adalah 440 cm.

Gimana, rumus keliling lingkaran dan cara menghitung keliling lingkaran cukup mudah, bukan? Yuk, perbanyak latihan dari contoh soal keliling lingkaran diatas agar makin mudah memahami materinya, ya!

Baca Juga: Sin Cos Tan dalam Trigonometri: Rumus, Tabel, dan Contoh Soal

Lingkaran adalah garis melengkung yang kedua ujungnya bertemu pada jarak yang sama dari titik pusat. Kedudukan titik-titik pada bidang datar berjarak sama dengan sebuah titik tertentu pada bidang tersebut. Titik tertentu itu disebut sebagai titik pusat lingkaran.

Lingkaran adalah bentuk yang sangat simetris. Setiap garis yang melalui pusat membentuk garis simetri refleksi dan memiliki simetri putar di sekitar pusat untuk setiap sudut.

Menurut publikasi University of Cambridge dalam nrich.maths.org, lingkaran mengandung makna simbolis. Bentuk ini sering digunakan untuk melambangkan harmoni dan persatuan.

Misalnya, pada simbol Olimpiade, terdapat memiliki lima lingkaran berkaitan dengan warna berbeda. Ini mewakili lima benua utama dunia yang bersatu dalam semangat persaingan yang sehat.

Materi geometri dalam matematika membahas lebih lanjut tentang keliling lingkaran sebagai berikut.

Contoh Soal Keliling Lingkaran Jika yang Diketahui Luasnya

1. Diketahui sebuah lingkaran memiliki luas 314 cm². Berapa kira-kira keliling dari lingkaran tersebut?Pembahasan:Diketahui:L = 314 cm²π = 3,14

Untuk menentukan keliling, dicari terlebih dahulu jari-jarinya dengan menggunakan rumus luas lingkaran:L = π x r²314 = 3,14 x r²r² = 314/3,14r² = 100r = 10

Setelah diketahui jari-jarinya 10, selanjutnya hitung kelilingnya:K = 2 x π x rK = 2 x 3,14 x 10K = 2 x 31,4K = 62,8 cm

Jadi, keliling dari lingkaran yang mempunyai luas 314 cm² adalah 62,8 cm.

2. Diketahui sebuah lingkaran mempunyai luas 1256 cm². Hitunglah berapa keliling lingkaran tersebut!Pembahasan:Diketahui:L = 1256 cm²π = 3,14

Untuk menentukan keliling, dicari terlebih dahulu jari-jarinya dengan menggunakan rumus luas lingkaran:L = π x r²1256 = 3,14 x r²r² = 1256/3,14r² = 400r = 20

Setelah diketahui jari-jarinya 10, selanjutnya hitung kelilingnya:K = 2 x π x rK = 2 x 3,14 x 20K = 2 x 62,8K = 125,6 cm

Jadi, keliling dari lingkaran yang mempunyai luas 1256 cm² adalah 125,6 cm.

Demikian yang dapat detikEdu sampaikan mengenai rumus keliling lingkaran beserta dengan contoh soalnya. Semoga bermanfaat!

Contoh soal keliling lingkaran dengan jari-jari

Contoh soal keliling lingkaran dengan jari-jari

Ani sedang bermain dengan sebuah roda yang memiliki jari-jari sepanjang 56 cm. Berapakah panjang keliling roda berbentuk lingkaran tersebut?

Lanjutkan membaca artikel di bawah

Karena yang diketahui merupakan jari-jari, maka rumus yang digunakan adalah Keliling Lingkaran = π x 2r. Selain itu, angka jari-jari merupakan kelipatan tujuh yang berarti menggunakan 22/7 sebagai phi. Selanjutnya, kamu tinggal memasukkan angka yang ada.

Jadi, keliling roda yang memiliki panjang jari-jari 56 cm tersebut adalah 352 cm.

Rumus Keliling Lingkaran

Merujuk pada Buku Kumpulan 100 Soal Hots dan Pembahasan Bangun Datar dari Penerbit CV Madani Jaya, lingkaran mempunyai sifat-sifat meliputi terdapat sebuah titik pusat, terdiri dari satu sisi, tidak memiliki titik sudut dan jumlah sudutnya 360 derajat, mempunyai jari-jari (r) dan diameter (d), serta simetri lipat dan simetri putar tidak terhingga.

Baca berita dengan sedikit iklan, klik di sini

Adapun rumus keliling lingkaran sebagai berikut:

Contoh Soal Keliling Lingkaran Jika yang Diketahui Diameternya

1. Diketahui sebuah lingkaran memiliki diameter 42 cm. Tentukan berapa keliling lingkaran tersebut!Pembahasan:Diketahui:d = 42 cmπ = 22/7

K = π x dK = 22/7 x 42 cmK = 132 cm

Jadi, keliling dari lingkaran dengan diameter 42 cm adalah 132 cm.

2. Hitunglah berapa keliling lingkaran yang memiliki diameter 28 cm!Pembahasan:Diketahui:d = 28 cmπ = 3,14

K = π x d K = 3,14 x 28 cmK = 87,92 cm

Jadi, keliling dari lingkaran dengan diameter 28 cm adalah 87,92 cm.

Rumus Keliling Lingkaran

Sebuah lingkaran membentuk garis lengkung dengan panjang tertentu yang disebut keliling.

Rumus keliling lingkaran adalah K = 2πr atau K = πd. Lambang K adalah keliling lingkaran.

Hasil bagi keliling dengan diameter lingkaran akan diperoleh bilangan yang nilainya 3,14 atau dapat juga menggunakan pembagian 22/7 yang disebut pi (π). Sedangkan r adalah jari-jari lingkaran.

Selain keliling lingkaran penuh, terdapat rumus untuk menghitung keliling setengah, seperempat, dan tiga perempat lingkaran. Bersumber dari buku “Pasti Bisa Matematika untuk SD/MI Kelas VI” oleh Tim Tunas Karya Guru, berikut pembahasannya.

Gambar Lingkaran (Dok. Penerbit Duta)

Rumus keliling lingkaran dalam gambar tersebut adalah:

1. Sebuah lingkaran mempunyai diameter 28 cm maka keliling lingkaran tersebut adalah…

Maka, hasil keliling lingkaran adalah 88 cm.

2. Sebuah lingkaran memiliki jari-jari 20 cm, berapa keliling lingkaran tersebut?

Jadi, keliling lingkaran tersebut adalah 125,6 cm.

Lingkaran memiliki bentuk lengkung atau melingkar pada seluruh sisinya.  Rumus luas lingkaran adalah L = πr2.

Adapun untuk menghitung luas setengah, seperempat, dan tiga per empat menggunakan:

Contoh Soal Keliling Lingkaran Jika yang Diketahui Jari-jari

1. Diketahui sebuah lingkaran memiliki jari-jari 21 cm. Tentukan berapa keliling dari lingkaran tersebut!Pembahasan:Diketahui:r = 21 cmπ = 22/7

K = 2 x π x rK = 2 x 22/7 x 21 cmK = 44/7 X 21 cmK = 132 cm

Jadi, keliling dari lingkaran yang memiliki jari-jari 21 cm adalah 132 cm.

2. Hitunglah keliling dari lingkaran yang memiliki jari-jari 15 cm!Pembahasan:Diketahui:r = 15 cmπ = 3,14

K = 2 x π x rK = 2 x 3,14 x 15 cmK = 2 x 47,1 cmK = 94,2 cm

Jadi, keliling dari lingkaran dengan jari-jari 15 cm adalah 94,2 cm.

Contoh Soal Menentukan Titik Pusat Lingkaran

Sejauh ini, gue harap elo udah paham sama materi titik pusat lingkaran, ya. Supaya pemahaman elo semakin mendalam, gimana kalau kita adain kuis?

Yap! Gue punya tiga contoh soal buat menentukan titik pusat lingkaran, nih. Coba elo asah kemampuan elo tentang materi hari ini dengan mengerjakan ketiga soal di bawah ini, ya. Semangat!

Tentukan persamaan umum lingkaran yang melalui titik pusat lingkaran P (-3, 7) dan melalui titik Q (-9, -1).

A. (x+3)² + (y-7)² = 100

B. (x-3)² + (y-7)² = 100

C. (x+3)² + (y+7)² = 100

D. (x-3)² – (y-7)² = 100

Ingat bahwa persamaan umum lingkaran berbentuk

Dengan merupakan titik pusat lingkaran dan (y,p) merupakan titik yang dilalui. Maka dari itu, untuk lingkaran yang melalui titik pusat lingkaran P (-3, 7) dan melalui titik Q (-9, -1), dapat kita tentukan jari-jarinya terlebih dahulu, yaitu:

(-9 – (-3))² + (-1 – 7)²  = r²

36 + 64 = 100, dengan demikian r² = 100

Sehingga, persamaan umum lingkarannya adalah (x + 3)² + (y-7)² = 100

Jadi, jawaban yang paling tepat yaitu A.

Diketahui persamaan standar lingkaran yaitu x² + y² – 12x + 5y = 20. Tentukan jari-jari dari lingkaran tersebut!

x² + y² – 12x + 5y = 20 merupakan persamaan standar lingkaran.

Dari (1) diperoleh dan , sehingga:

Dari persamaan (1) diketahui bahwa , maka:

Jadi, jawaban yang paling tepat yaitu A.

Diketahui persamaan standar lingkaran yaitu . Tentukan titik pusat lingkaran tersebut!

Untuk persamaan lingkaran yang berbentuk , maka titik pusatnya yaitu A = -12, B=-10. Sehingga:

Jadi, jawaban yang paling tepat yaitu B.

Gimana, materi pembelajaran kita hari ini? Nggak susah, kan? Mungkin, gue bisa highlight satu hal buat elo. Kalau elo mau mencari titik pusat lingkaran, ingat aja buat nyari titik koordinatnya dulu, ya.

Kalau koordinatnya udah ketemu, elo bisa nerusin hasil akhirnya dengan lebih mudah. Nah, dari ketiga contoh soal di atas … siapa yang jawabannya benar semua, nih?

Oh iya, kalau elo merasa tiga soal di atas masih kurang buat ngebantu elo belajar tentang titik pusat, tenang aja! Zenius punya puluhan latihan soal buat elo persiapan try out, lho.

Lumayan banget nih, bisa sambil mengasah kemampuan elo mengerjakan soal-soal nantinya. Yuk, langsung aja klik link di bawah ini buat ikutan latihan soalnya, ya!

Latihan Try Out Bareng Zenius

Nah, itu dia pembahasan kita hari ini tentang titik pusat lingkaran. Lengkap banget, kan? Mulai dari pengertian, rumus, garis singgung, sampai penjabaran dari contoh soal titik pusat lingkaran.

Kalau dari elo sendiri, gimana? Udah paham sejauh ini? Oh iya, Zenius juga punya materi matematika lainnya yang nggak kalah keren dan menarik, lho. Nah, video materi matematika di bawah ini langsung diajarin sama Sabda! Penasaran? Tonton videonya langsung, ya!

Bangun datar merupakan salah satu materi yang sering muncul pada mata pelajaran Matematika. Bangun datar terdiri dari persegi, persegi panjang, segitiga, lingkaran, dan lain sebagainya. Setiap bangun datar yang ada, memiliki rumus luas dan keliling yang berbeda-beda. Lantas, apa ya rumus keliling lingkaran?

Sebelum membahas lebih jauh mengenai rumus keliling lingkaran, ada baiknya mengetahui apa itu lingkaran, lalu bagaimana unsur dan sifat-sifatnya. Berikut ini penjelasannya yang berhasil detikEdu rangkum.

Lingkaran bisa dipahami sebagai suatu garis lengkung, yang kedua ujung dan titiknya, terletak pada garis lengkung tersebut dengan jarak yang sama terhadap suatu titik tertentu. Lingkaran bisa diartikan sebagai sekumpulan titik-titik yang tidak terhingga, mempunyai jarak yang sama pada titik tertentu.

SCROLL TO CONTINUE WITH CONTENT

Dikutip melalui buku berjudul Geometri dan Pengukuran Berbasis Pendekatan Saintifik karya Toybah, dkk (2020), Lingkaran adalah himpunan dari titik-titik yang memiliki jarak sama terhadap suatu titik tertentu. Jarak tersebut disebut dengan jari-jari lingkaran.

Sedangkan, titik pusat tertentu bisa disebut sebagai titik pusat lingkaran. Berikut ini unsur-unsur dan sifat-sifat pada lingkaran.